

5-2. Multidimensional Problems Expressible in Terms of One-Dimensional Ones. Use of One-Dimensional Charts

In this section we consider a class of multidimensional problems whose solution can be found by expressing the problem in terms of two or more one-dimensional problems. First an example will be taken from two-dimensional cartesian geometry, then the results will be generalized to three-dimensional cartesian and other geometries.

Example 5-12. An infinitely long rod of rectangular cross section ($2L \times 2l$) having the uniform initial temperature T_0 is plunged suddenly into a bath at constant temperature T_∞ . The heat transfer coefficient is h (Fig. 5-13). We wish to find the unsteady temperature of the rod.

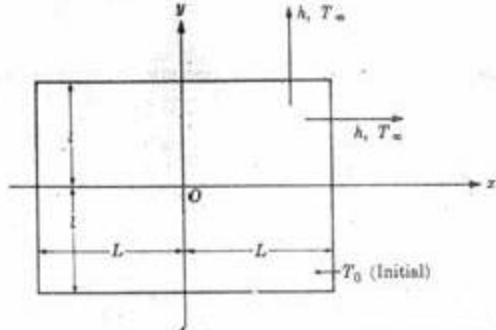


FIG. 5-13

The formulation of the problem in terms of the dimensionless temperature $\vartheta = (T - T_\infty)/(T_0 - T_\infty)$ is

$$\begin{aligned} \frac{\partial \vartheta}{\partial t} &= a \left(\frac{\partial^2 \vartheta}{\partial x^2} + \frac{\partial^2 \vartheta}{\partial y^2} \right), \quad \vartheta(x, y, 0) = 1, \\ \frac{\partial \vartheta(0, y, t)}{\partial x} &= 0, \quad -k \frac{\partial \vartheta(L, y, t)}{\partial x} = h \vartheta(L, y, t), \quad (5-81) \\ \frac{\partial \vartheta(x, 0, t)}{\partial y} &= 0, \quad -k \frac{\partial \vartheta(x, l, t)}{\partial y} = h \vartheta(x, l, t) \end{aligned}$$

The problem could have been solved by the usual separation $\vartheta(x, y, t) = X(x)Y(y)\tau(t)$. Here, however, a less restrictive form,

$$\vartheta(x, y, t) = X(x, t)Y(y, t), \quad (5-82)$$

will be assumed. If Eq. (5-82) works, we are led to the important conclusion that it is possible to express an unsteady two-dimensional problem as the product of two unsteady one-dimensional problems.

Introducing Eq. (5-82) into the differential equation of Eq. (5-81) and rearranging gives

$$\frac{1}{X} \left(\frac{\partial X}{\partial t} - a \frac{\partial^2 X}{\partial x^2} \right) = - \frac{1}{Y} \left(\frac{\partial Y}{\partial t} - a \frac{\partial^2 Y}{\partial y^2} \right) \quad (5-83)$$

Since x and y can vary independently, both sides of Eq. (5-83) must be independent of either variable, and equal to a parameter, say $\pm \lambda^2(t)$, which now may depend on the common variable, time. However, because of the geometric as well as thermal symmetry of the problem, the characteristic-value problems in the x - and y -directions must be similar. This can occur only with $\lambda^2(t) = 0$. Employing this value of $\lambda^2(t)$, and introducing Eq. (5-82) into the initial and boundary conditions of Eq. (5-81), we have

$$\begin{aligned} \frac{\partial X}{\partial t} &= a \frac{\partial^2 X}{\partial x^2}, & \frac{\partial Y}{\partial t} &= a \frac{\partial^2 Y}{\partial y^2}, \\ X(x, 0) &= 1, & Y(y, 0) &= 1, \\ \frac{\partial X(0, t)}{\partial x} &= 0, & \frac{\partial Y(0, t)}{\partial y} &= 0, \\ -k \frac{\partial X(L, t)}{\partial x} &= hX(L, t), & -k \frac{\partial Y(l, t)}{\partial y} &= hY(l, t). \end{aligned}$$

Thus the problem becomes expressible as the product of two one-dimensional unsteady problems. These are identical to each other, and to the formulation of Example 5-3, whose solution is given by Eq. (5-13). The dimensionless form of Eq. (5-13) is

$$\left(\frac{T - T_\infty}{T_0 - T_\infty} \right)_{2L \times 2l, \text{Plate}} = 2 \sum_{n=1}^{\infty} \left(\frac{\sin \mu_n}{\mu_n + \sin \mu_n \cos \mu_n} \right) e^{-\mu_n^2 F_0} \cos \mu_n t, \quad (5-84)$$

where $\xi = x/L$ (or y/l), $F_0 = at/L^2$ (Fourier number), $\mu_n = \lambda_n L$, and μ_n are the zeros of $\mu_n \sin \mu_n = Bi \cos \mu_n$. In Fig. 5-14,* $\left((T - T_\infty)/(T_0 - T_\infty) \right)_{2L, \text{Plate}}$ is plotted against F_0 for the values $\xi = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0$, with Bi as parameter.

Thus, noting that Eq. (5-82) may be written in the form

$$\left(\frac{T - T_\infty}{T_0 - T_\infty} \right)_{2L, 2l, \text{Rod}} = \left(\frac{T - T_\infty}{T_0 - T_\infty} \right)_{2L, \text{Plate}} \left(\frac{T - T_\infty}{T_0 - T_\infty} \right)_{2l, \text{Plate}} \quad (5-87)$$

and, using Eq. (5-87) with the one-dimensional temperature chart given by Fig. 5-14, we may readily find the instantaneous temperature of an infinitely long rod of rectangular cross section ($2L \times 2l$).

The foregoing procedure may now be extended to three-dimensional cartesian and two-dimensional cylindrical geometries. The result for the cartesian case is

$$\left(\frac{T - T_\infty}{T_0 - T_\infty} \right)_{2x, 2L, 2l, \text{Parallelepiped}} = \left(\frac{T - T_\infty}{T_0 - T_\infty} \right)_{2x, \text{Plate}} \left(\frac{T - T_\infty}{T_0 - T_\infty} \right)_{2L, \text{Plate}} \left(\frac{T - T_\infty}{T_0 - T_\infty} \right)_{2l, \text{Plate}} \quad (5-88)$$

and that for a cylindrical rod of radius R and height $2L$ is

$$\left(\frac{T - T_\infty}{T_0 - T_\infty} \right)_{2x, 2L, \text{Rod}} = \left(\frac{T - T_\infty}{T_0 - T_\infty} \right)_{\text{Infinite, } 2R \text{ Rod}} \left(\frac{T - T_\infty}{T_0 - T_\infty} \right)_{2L, \text{Plate}} \quad (5-89)$$